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1 Problem 1

From Electrodynamics, we know that the continuity equation is V.J = —%. In one
dimension this reduces to )
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With the use of the SE we also get
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Hence the continuity equation is not satisfied when U* differs from U.

2 Problem 2

If the coordinate system is kept as given, then it is necessary to solve the SE for it with the
new boundary conditions

(=L/2) = (L/2) = 0.
If you try the solution of the form ¢ (z) = Acos(kz) + Bsin(kz) then because you no longer
have the condition ¢(0) = 0, both sines and cosines will be legitimate solutions. Thus, the

simpliest thing to do is to shift coordinates from z to y, where y = = + L/2. Then the
potential extends from 0 <y < L (¢(y = 0) = 0) and

Yuly) = \/3 sin(~).

a). Then for the particle in the n'th eigenstate the probability is
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where the integral of the cosine vanished because of the pereodicity and the probability is
independent of n.
b). Similarly this probability is
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For the ground state this quantity is 1/2 4+ 1/7 and for large n it is 1/2.

3 Problem 3

In order to solve this problem I will use the orthogonality of eigenstates, i.e.

| vi@pn()dz = b,
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where 1, is the properly normalized nth eigenstate, and 9,,, is 1 for m = n and 0 otherwise.
a). Thus

u(r) = 191 + cathy
with ¢; = 2¢;. Then

L= [T w@ue)de = [ (Pl + e + cGebivs + ol bP)de = laf* + P,
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where orthogonality was used in the last step. Thus (up to a phase) ¢; = 1/v/5 and ¢y =

2//5.

b). The operator E acting on the n'th eigenstate gives E,, (i.e. E, = E,1,). Thus

= / r)dr = /_O:O(El‘CﬂQWl’Q + Evcrcyhns 4 Excieatiihy + Ealcol?|1hs|*)dx
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Using the fact that for 1-D well E,, = Zfri n?,
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c). When the measurement is taken the particle will be found in either first or second
eigenstate (i.e. we will measure either E; or Es). In general, the probability of finding a

particle in the n'th eigenstate is
2= [ vi@ula)dal



In our case
P = |/ Yi(z dgj|2 ’/_ (01‘1#1’2 +C2¢1¢§)dx]2 _ |C1‘2 —1/5

and similarly
Po=| [ iaue)ds] = |af* = 4/5.

From statistics we know that the expectation value of a quantity is the sum over possible
values times the probability of each value; i.e.

< E >= ZEnPTL = E1‘01|2 + E2‘02|27

which is the same as in part b).
d). The measurement of energy will collapse the wavefunction down to a single state,
and < E > will equal the value measured. Thus < F > will be E; or Ej.

4 Problem 4
a).
—/ r)zu(z)dr = (2/L)|c|? / (sin(zm/L) + 2sin(2zw/L))* d
= 2L|cl|2/0 y (sin(ym) + 2sin(2ym))* dy,
where I used substitution y = x/L in the last step, in order to eliminate L dependence of

the integral. It is now purely numerical and can easily be evaluated on a calculator (or you
can do it by parts) and < x >= 0.7L|c;|*> = 0.14L.

b). The time dependence is added by multiplying each eigenstate by e~/"Fnt: je. for
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where 6 = (Fy — E;)/h and
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The last integral is less than 0 because sin(yn) sin(2yn) is antisymmetric about y = 0.5 and
negative for y > 0.5 (and clearly y takes on greater values for y > 0.5). Thus < x > will be
the smallest whenever cos(ft) = 1, which happends at ¢ = 0. Similarly < z > will be the
greatest whenever cos(6t) = 0; this first happends for
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5 Problem 5
a).
ApAx ~ h/2

The momentum roughly equals it’s uncertainty, thus

B p2 h2
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Since the uncertainty in position is the diameter of the proton (4fm), E = 9.5 1071J =
6+ 103 MeV.

b). For a classical oscillator F' = kx and the Kinetic energy at the center equals potential
energy at maximum displacement, i.e. 1/2kz? = E and

F =2F/x=6%10°MeV/fm

¢). In this case
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which is much less than the answer to part b) (thus the proton is confined to the nucleus).

6 Problem 6

In two dimensions the time independent SE is

—h? 0Pu  d*u
( +
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)+ U(z,y)u = Eu.

Once again U = 0 in the well and u(z,y) = 0 outside, thus we have the boundary conditions
u(0,y) = u(z,0) = u(L,y) = u(x, L) = 0.
Since u must be zero whenever x or y is 0 the solutions are of the form

u(z,y) = Asin(k,yx) sin(kyy).



Since u(L,y) = u(x, L) = 0 we have the following restrictions on k, and k,

k., L =n,m
and

kyL = nym,
where n,,n, = 1,2, .... Normalizability now states that

L L
1= / d:c/ dyA® sin®(n,mx /L) sin®(n,my/ L),
0 0
and therefore A = 2/L. Hence we have worked out the eigenstates to be
2
Uny i, (T,Y) = I sin(n,mz /L) sin(n,my/L).

Plugging these back into SE gives us the corresponding energies
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7 Problem 7

Near the ground state Ap ~ p. Thus (using ApAx ~ h/2)

2
= SmAz2

and we find the minimum of E by differentiating with respect to Az, i.e.

E=p*/2m)+U + Mz?,
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Solving for Az and substituting back into F gives us

h4/342/3)\1/3 )\1/3h4/3 )\1/3714/3
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{m2/3 +41/3m2/3_ m2/3 <3/2 )

and the units work out correctly.

8 Problem 8

Since the virtual particle is created as a result of uncertainty in energy, it’s rest energy
(140MeV) is roughly AE. Thus

d=vt~ch/(AE) = 14fm.



